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Abstract

Purpose: To define global transcriptional responses of Staphylococcus aureus and its codY mutant (CodY is a transcription
regulator of virulence and metabolic genes in response to branched-chain amino acids) when growing in bovine aqueous
(AH) and vitreous humor (VH) in vitro, and to investigate the impact of codY deletion on S. aureus virulence in a novel
murine anterior chamber (AC) infection model.

Methods: For the in vitro model, differential transcriptomic gene expression of S. aureus and its codY mutant grown in
chemically defined medium (CDM), AH, and VH was analyzed. Furthermore, the strains were inoculated into the AC of mice.
Changes in bacterial growth, electroretinography and inflammation scores were monitored.

Results: Bovine AH and VH provide sufficient nutrition for S. aureus growth in vitro. Transcriptome analysis identified 72
unique open reading frames differentially regulated $10-fold between CDM, AH, and VH. In the AC model, we found
comparable growth of the codY mutant and wild type strains in vivo. Average inflammation scores and retinal function were
significantly worse for codY mutant-infected eyes at 24 h post-infection.

Conclusion: Our in vitro bovine AH and VH models identified likely nutrient sources for S. aureus in the ocular milieu. The
in vivo model suggests that control of branched-chain amino acid availability has therapeutic potential in limiting S. aureus
endophthalmitis severity.
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Introduction

Staphylococcus aureus is a commensal bacterium on the skin

and mucosa, but is also a leading cause of infections in humans.

When opportunistic pathogens infect sterile sites, they adapt,

proliferate in the host, and exhibit virulence. The host becomes the

sole source for nutrients. For many gram-positive bacteria, CodY

provides an important regulatory link between nutrient availability

and virulence factor production [1]. CodY controls expression of

virulence and metabolic genes in response to the availability of

branched-chain amino acids (BCAA) and GTP through Agr, a

global regulator of the staphylococcal virulon [2]. In the presence

of GTP and/or BCAA, CodY shows a higher affinity for its DNA

targets, while in the absence of nutrients, there is a decrease in the

GTP and BCAA levels causing decreased affinity of CodY to the

DNA and thus induction of its regulon. In S. aureus, CodY

regulates its regulon either indirectly via the quorum sensing

regulator Agr or independent of the Agr system and through its

direct binding to its DNA targets [2]. In general, CodY-regulated

genes trigger adaptation to starvation [2–9] as well as play a role in

virulence of pathogenic bacteria [3,4,10].

The human eye as well as eyes of animals like rabbits and mice

possess sterile anterior and posterior compartments, which contain

aqueous and vitreous humor, respectively. Infectious endophthal-

mitis [inflammation within the eye) is a complication of

penetrating trauma to the eye and intraocular procedures such

as cataract surgery that can lead to blindness [11–14]. The visual

prognosis following infection depends greatly on the virulence of

the causative organism, visual acuity at presentation, and the

efficacy of antimicrobial treatment [15]. S. aureus is the second

most common cause of acute postoperative infection following

intraocular surgeries and is also associated with significant visual

loss [15]. Given the presence of BCAA in human aqueous and

vitreous humors [16,17] and the findings that CodY controls

directly and indirectly S. aureus virulence genes such as hla and

agr [1,2] which contribute to virulence in animal models of
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endophthalmitis [18,19], CodY may play a role in regulating S.
aureus virulence during endophthalmitis.

S. aureus growth and virulence in animal models of endoph-

thalmitis has been assessed, most frequently by intravitreal

(posterior chamber) injection [18,19]. S. aureus strains grow

in vivo to different extents, depending on the strain used and the

inoculation site (anterior versus posterior compartments) [20,21].

For example, following injection into the anterior chamber, Balzli,

et al. found that among 9 S. aureus isolates injected into the

anterior chamber of rabbit eyes, only one strain, UMCR1, grew

[20]. Wu, et al. [21] and Kowalski, et al. [22] found that S. aureus
grew in the anterior chamber of rabbits, and used that model to

test antibiotic efficacies. Several other studies have found that S.
aureus can grow to high densities in the vitreous, and studied the

contribution of toxins, the global virulence regulators Agr and Sar

[18,23], and other cell wall components to pathogenesis. S. aureus
clearly survives in the human eye, given that S. aureus can be

recovered from the aqueous and vitreous humors of patients who

develop endophthalmitis [24]. It is unknown what nutrient sources

S. aureus utilizes during infection of the human eye. In this study,

we use aqueous and vitreous fluids extracted from commercially-

obtained bovine eyes as ex vivo endophthalmitis models for S.
aureus, and define global transcriptional responses of S. aureus to

growth in these media. Our goal was to identify genes that are

consistently and highly differentially regulated by S. aureus during

growth in pooled bovine AH and VH samples. We additionally

interrogate the impact of codY deletion on S. aureus gene

expression during growth in these media, as well as its impact on

S. aureus virulence in a novel murine anterior chamber (AC)

infection model.

Materials and Methods

Strains and growth media
S. aureus strains used are listed in Table 1. S. aureus was

routinely cultured in brain heart infusion (BHI) or on BHI agar.

All cultures were incubated at 37uC. For microarray experiments,

S. aureus were grown in chemically defined Socransky’s medium

[25] supplemented with 20 mM glucose (referred to here as

CDM), or bovine aqueous or vitreous humor (AH and VH,

respectively). CDM contains 76 mM leucine, 85 mM valine, and

76 mM isoleucine. Bacterial growth was assessed by monitoring

optical density at 600 nm (OD600) using a Biotech Synergy 2

microplate reader or by serial dilution and plating on BHI agar to

obtain colony forming units per milliliter (CFU/mL).

Bovine AH and VH collection
AH and VH were extracted from commercially available bovine

eyes (Sierra for Medical Science, Whittier, CA) and pooled as

described previously [26]. Typical volumes of AH and VH

recovered per bovine eye were 0.5–1 mL and 3–4 mL, respec-

tively. AH was filter-sterilized with a 0.45 mm HT Tuffryn

membrane sterile acrodisc syringe filter (Pall Life Sciences,

Batavia, IL). VH was filter-sterilized with a 0.45 mm PES sterile

filter (Whatman, Clifton, NJ). Sterile AH and VH were stored at

280uC until use. For microarray experiments, aspirates were

pooled to a total of 40 mL achieve adequate volume.

Microarray analysis
S. aureus strains were struck from freezer stock onto BHI agar

and incubated overnight. Colonies were used to inoculate CDM,

AH or VH broth cultures, which were incubated overnight and

then used to inoculate new CDM, AH and VH broth cultures to

an initial OD600 of 0.02–0.03. Bacteria were harvested for

microarray analysis and semi-quantitative RT-PCR analyses

during exponential growth, at an OD600 of 0.4–0.5 for CDM

and 0.15–0.2 for AH and VH. Cells were stabilized with

RNAProtect (Qiagen) and RNA was extracted using the RNA

Bee reagent (TelTest, Inc.) per the manufacturer’s instructions.

Absence of DNA contamination was verified by PCR using

primers targeting the 16S rRNA gene (For, 59-AAC TCT GTT

ATT AGG GAA GAA C-39; Rev, 59-CCA CCT TCC TCC

GGT TTG TCA CC-39). cDNA synthesis, fragmentation, biotin

labeling and hybridization to Affymetrix S. aureus GeneChips

were performed as previously described [27]. Hybridization and

scanning of GeneChips were performed at the University of Iowa

DNA Core. Microarray experiments were performed in duplicate.

Affymetrix GeneChip data was analyzed with GeneChip Oper-

ating Software (GCOS version 1.4). Probe sets with statistically

significant change calls (increased or decreased; p#0.05) between

control and test conditions were considered for further analysis,

and fold change cut-offs were applied as described in the text.

Microarray data have been deposited in ArrayExpress under

accession numbers E-MTAB-2928.

For the Affymetrix S. aureus GeneChip, probe set IDs (for

example, sa_c10261s8939_a_at) are used instead of gene names or

ORF designations. To convert probe set IDs to genomic loci, we

downloaded target DNA sequences corresponding to differentially

expressed probe sets from the NetAffx Analysis Center (www.

affymetrix.com/analysis/index.affx). Target sequences were com-

pared to available S. aureus sequences in GenBank using NCBI

BLAST (http://blast.ncbi.nlm.nih.gov). Transcription unit and

metabolic pathway predictions were obtained from the BioCyc

Staphylococcus aureus COL database (http://biocyc.org/

organism-summary?object=SAUR93062). Where appropriate,

predicted protein products of differentially expressed genes were

analyzed for putative functions using NCBI protein BLAST and

Pfam 26.0 (http://pfam.janelia.org). Subcellular localization of

proteins was predicted using PSORTb version 3.0 (http://www.

psort.org/).

Semiquantitative RT-PCR
Semiquantitative reverse transcription (RT)-PCR was per-

formed using Superscript II reverse transcriptase as outlined by

the manufacturer (Invitrogen). S. aureus RNA was used to make

cDNA with priming by random hexamers. cDNA was purified

Table 1. Bacterial strains used in this study.

S. aureus strain Description Reference/source

SA564 Clinical isolate [48]

CDM7 SA564 DcodY::ermC [29]

MS7 SA564 DcodY::ermC pTL6936-codY [29]

doi:10.1371/journal.pone.0110872.t001
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with the QIAquick PCR Purification kit (Qiagen). Five ng of the

resulting purified cDNA was used as template in a 25 ml standard

PCR reaction with Taq polymerase (New England Biolabs). For

visualization, 5 ml of the PCR reaction was analyzed using agarose

gel electrophoresis with ethidium bromide. The housekeeping

gene clpX was used as a control for gene expression. Expression of

tst, cidA and nanA was evaluated. Those genes were chosen based

on their significant differential regulation across media (nanA was

54.8 in AH vs DM; cidA was 12.8 in VH vs DM; tst was 15.2 in

AH vs DM). An independent set of pooled fluids was used for this

experiment.

Murine AC infection model
Female C57BL/6J mice were obtained from the Charles River

Laboratory (Boston, MA). All animals were treated according to

the guidelines of the Association for Research in Vision and

Ophthalmology Resolution on the Use of Animals in Research.

The protocol was approved by Massachusetts Eye and Ear

Infirmary’s Institutional Animal Care and Use Committee

(IACUC). Mice were anesthetized by intraperitoneal injection of

ketamine (62.5 mg/kg) and xylazine (12.5 mg/kg). Animals were

euthanized at the appropriate time points by CO2 asphyxiation.

S. aureus colonies obtained after growth on BHI agar were

cultured overnight in BHI broth and subcultured 1:500 with fresh

BHI broth and grown to an OD600 nm of 0.4–0.8, pelleted by

centrifugation at 10,000 rpm, and washed twice with PBS. The

ACs of the right eyes of 6–8-week-old female mice were inoculated

with 1 mL of S. aureus culture using 35 gauge needle on a nanofil

syringe (World Precision Instruments, Inc.), just anterior to the

limbus without touching the iris. For S. aureus MS7, 2 mM

isopropyl b-D-1-thiogalactopyranoside (IPTG) was added to

subcultures and included in PBS washes. The left eyes were left

untreated and served as internal controls for electroretinography

(ERG). Experiments were performed at least in duplicate with a

minimum of 3 animals per experimental group. Animals were

given water with 12 mM IPTG for one week prior to infection

with S. aureus MS7. Quantification of in vivo bacterial growth,

slitlamp examination and ERG were performed as described

previously [28]. Briefly, intraocular inflammation was graded

using the following criteria: 0, normal; 1, small amount of fibrin on

the pupil; 2, iris partially covered with fibrin and/or hypopyon; 3,

iris covered with fibrin and/or hypopyon; 4, pupil not visible. The

retinal function in the infected eye was measured using ERG and

was defined as the ratio of the b-wave (measured from the trough

of the a-wave to the peak of the b-wave) amplitude of the

experimentally treated eye to that of the contralateral untreated

eye, times 100.

Histological analysis
Enucleated eyes were fixed in buffered formalin solution and

histological analysis was performed by Excalibur Pathology Inc.

(Oklahoma City, OK). Pathology slides were examined for signs

and extent of inflammation in the different compartments of the

eye, and disruption in retinal architecture.

Statistical analysis
Normality tests were performed on all data sets. The data were

analyzed with an unpaired t-test if the distribution was Gaussian,

or with the nonparametric Mann-Whitney test if the data were not

normally distributed. P#0.05 was set as the basis for rejection of

Figure 1. S. aureus growth in CDM, AH and VH. S. aureus SA564
(black circles), CDM7 (white squares), and MS7 (grey triangles) were
grown in CDM, AH, or VH, as described in the text. Growth was
monitored by optical density at 600 nm (OD600 nm). Representative

growth curves are shown. Arrows indicate time points where microarray
sampling occurred.
doi:10.1371/journal.pone.0110872.g001
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Table 2. Transcriptomes of AH- and VH-grown S. aureus SA564.

ORF/intergenic regiona Genea Description of gene or queried region
AH vs DM Fold
changeb

VH vs DM Fold
changec

VH vs AH
Fold
changed

Genes putatively involved in nutrient transport or metabolism

SACOL0154 aldA1 Aldehyde dehydrogenase 13.2 (3.3) 5.0 (1.1)

SACOL0173 ipdC Indole-3-pyruvate decarboxylase 12.1 (2.2) 12.1 (1.3)

SACOL0176 Conserved hypothetical protein 42.2 (1.1) 3.9 (1.3) 210.9 (1.3)

SACOL0177 murQ Glucokinase regulator-related protein 27.4 (1.2) 211.5 (1.2)

SACOL0178e PTS system, IIBC components 21.1 (1.2) 28.3 (1.3)

SACOL0179 Phosphosugar-binding transcriptional
regulator, RpiR family

12.1 (1.2) 26.2 (1.5)

SACOL0192 Maltose ABC transporter, ATP-binding protein, putative 21.5 (1.5) 26.5 (1.6)

SACOL0193 Maltose ABC transporter, maltose-binding
protein, putative

14.4 (1.3) 3.4 (1.2) 24.2 (1.4)

SACOL0194 Maltose ABC transporter permease protein 11.1 (1.5) 3.3 (1.4) 23.7 (1.4)

SACOL0195 Maltose ABC transporter permease protein 13.9 (1.5) 3.7 (1.4) 23.4 (1.5)

SACOL0196 Oxidoreductase, Gfo/Idh/MocA family 12.6 (1.5) 3.3 (1.3) 23.9 (1.5)

SACOL0197 Oxidoreductase, Gfo/Idh/MocA family 10.2 (1.4) 3.2 (1.1) 23.2 (1.4)

SACOL0198 Conserved hypothetical protein 10.7 (1.4) 3.1 (1.3) 23.1 (1.2)

SACOL0200e Phosphoglycerate transporter family protein 44.5 (1.4) 227.9 (1.6)

SACOL0204 pflB Formate acetyltransferase 16.0 (2.7) 24.4 (2.0)

SACOL0205 pflA Pyruvate formate-lyase-activating enzyme 11.5 (2.5) 4.3 (1.8)

SACOL0215 Propionate CoA-transferase, putative 10.7 (1.4)

SACOL0308e (yeiC) Carbohydrate kinase, PfkB family 54.8 (1.5) 240.1 (1.8)

SACOL0309 (yeiN) Conserved hypothetical protein 45.3 (1.6) 238.7 (1.7)

SACOL0310 (yeiM) Nucleoside permease NupC, putative 28.3 (2.1) 232.0 (1.7)

SACOL0311 nanT Sodium:solute symporter family protein 38.1 (1.7) 213.2 (1.7)

SACOL0312 nanA N-acetylneuraminate lyase 54.8 (1.7) 3.5 (1.3) 214.4 (1.7)

SACOL0400 (ulaA) Transport protein SgaT, putative 13.7 (1.4) 212.6 (1.4)

SACOL0401 (ulaB) Conserved hypothetical protein 20.7 (1.4) 216.0 (1.5)

SACOL0402 (ulaC) PTS system, IIA component 29.3 (1.4) 223.8 (1.4)

SACOL0403 Transcriptional antiterminator, BglG
family

28.3 (1.4) 228.3 (1.6)

ig_SACOL0913 Intergenic region downstream of
SACOL0913

215.2 (1.9) 26.3 (2.4)

SACOL0960 rocD2 Ornithine aminotransferase 10.0 (2.0) 3.5 (1.2)

SACOL1360 Aspartate kinase 10.6 (5.9) 6.0 (1.3)

SACOL1734 gapA2 Glyceraldehyde-3-phosphate dehydrogenase 10.4 (4.9) 26.8 (4.9)

SACOL1784 acuA Acetoin utilization protein AcuA 13.7 (3.6)

SACOL1785 Acetoin utilization protein AcuC 10.6 (3.2)

SACOL1816 putA Proline dehydrogenase 21.1 (1.7) 3.7 (1.4) 25.4 (1.7)

SACOL2163 Conserved hypothetical protein 11.7 (1.4) 7.2 (1.5)

SACOL2247 Hypothetical protein 219.7 (7)

SACOL2356 ABC transporter, ATP-binding protein 210.0 (2.7)

SACOL2357 ABC transporter, permease protein 210.6 (2.9)

SACOL2403 ABC transporter, substrate binding
protein

26.7 (1.5) 215.7 (1.5)

SACOL2415 gpm Phosphoglycerate mutase 10.9 (1.7) 12.1 (1.6)

SACOL2427 bioA Adenosylmethionine-8-amino-7-oxononanoate
aminotransferase

8.3 (3.5) 13.9 (1.5)

SACOL2428 bioD Dethiobiotin synthase 16.0 (3.9) 24.3 (1.7)

SACOL2441 Amino acid permease 10.6 (4.4) 3.9 (1.7)

SACOL2527 Fructose-1,6-bisphosphatase, putative 11.3 (2) 6.7 (1.2)

In Vitro and In Vivo S. aureus Endophthalmitis Models
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the null hypothesis. The statistical analysis was conducted with the

aid of the Harvard Catalyst Biostatistical Consulting Program.

Results

S. aureus SA564 in vitro growth in bovine AH and VH
S. aureus SA564 is a clinical isolate that was previously used to

evaluate a role for codY in S. aureus virulence regulation [29]. As a

first step in understanding S. aureus physiology and metabolism

during endophthalmitis, we evaluated S. aureus SA564 growth in

pooled AH and VH harvested from commercially obtained bovine

eyes. S. aureus SA564 was also grown in Sokransky’s medium, a

buffered, defined medium supplying amino acids, vitamins,

nucleobases, metals, and other growth factors [25], supplemented

with 20 mM glucose as a carbon source. For the purposes of this

manuscript, Sokransky’s medium with 20 mM glucose is referred

to as CDM. Representative growth curves for S. aureus SA564 as

assessed by OD600 nm are shown in Fig. 1. These data demonstrate

that CDM, pooled bovine AH, and pooled bovine VH support

in vitro growth of S. aureus SA564. We reproducibly observed a

clumping phenotype early in S. aureus in vitro AH growth,

resulting in reduced cell density measurements obtained by OD600

nm, as shown in Fig. 1. Also of note, one pooled AH sample did not

support robust S. aureus in vitro growth (data not shown), possibly

as a result of antimicrobials such as antibiotics or inflammatory

factors present in one or more individual AH samples. We were

unable to obtain additional information from the vendor about the

health and history of cows used in this study.

Transcriptome analysis of AH- and VH-grown S. aureus
SA564

We used Affymetrix GeneChips to examine gene expression of

S. aureus SA564 during growth in bovine AH and VH, using

CDM-grown SA564 as a control. Cells were harvested for

microarray analysis during exponential growth; representative

time points are indicated by arrows in Fig. 1. Microarrays were

Table 2. Cont.

ORF/intergenic regiona Genea Description of gene or queried region
AH vs DM Fold
changeb

VH vs DM Fold
changec

VH vs AH
Fold
changed

Putative or confirmed virulence and biofilm factors

SACOL0247 lrgA Holin-like protein LrgA 7.0 (3.8) 214.4 (4.0)

SACOL0248 lrgB LrgB protein 6.3 (4.1) 211.1 (3.8)

SACOL1187 Antibacterial protein (phenol soluble modulin) 10.4 (2.5) 26.5 (1.8)

SACOL2509 fnbB Fibronectin binding protein B 213.0 (1.3)

SACOL2554_1 cidA LrgA family protein 12.8 (1.4) 34.9 (1.4)

SACOL2652 clfB (rev comp) Queries 97 nt region complementary
to the 59 end of clfB (clumping factor B)

230.4 (1.2) 26.4 (2.0)

SACOL2694 geh Lipase 19.4 (1.4) 3.7 (1.3) 24.4 (1.5)

SA1817f sec3 Enterotoxin type C3 10.9 (3.0) 26.9 (2.4)

SA1819f tst Toxic shock syndrome toxin-1 15.2 (5.5) 28.3 (5.7)

Probable prophage or genomic island genes of unknown significance

SACOL0325g Prophage L54a, antirepressor, putative 223.8 (2.2) 29.9 (2.0)

SACOL0326g Hypothetical protein 226.4 (2.4) 215.7 (2.2)

SAOUHSC_02028 e QETA ORF57-like protein 222.6 (1.9) 225.5 (1.4)

SAOUHSC_02078 QPV83 orf 10-like protein 220.0 (2.0) 210.4 (1.8)

SAOUHSC_02206 Hypothetical phage protein 210.4 (1.6) 29.5 (1.6)

SAV0859h Hypothetical protein 217.1 (1.7) 28.0 (2.3)

ig_SAV0860h Intergenic region downstream of SAV0860 214.2 (1.8) 210.7 (1.9)

SAV0905h Similar to QETA ORF57-like protein 222.6 (1.9) 225.5 (1.4)

SAV1985i Hypothetical protein 217.4 (1.9) 211.5 (2.0)

a ORFs were identified by BLAST analysis of Affymetrix array target sequences, as described in the materials and methods. If a corresponding ORF was identified in S.
aureus COL, that strain’s ORF identifiers were used as default. SACOL####, S. aureus COL (GenBank accession number CP000046.1); SAV####, S. aureus Mu50
(BA000017.4); SA####, S. aureus N315 (BA000018.3); SAOUHSC_####, S. aureus NCTC 8325 (CP000253.1). Vertical lines indicate genes computationally predicted to
be in the same transcriptional unit. Gene names in brackets were assigned in this study using data shown in Table S1.
b Fold change in expression of genes during S. aureus SA564 growth in AH as compared to growth in glucose-supplemented CDM; a positive number indicates an up-
regulation of the gene during growth in AH. Standard deviation is shown in parentheses. Fold changes $3 and ,10 are shown and italicized.
c Fold change in expression of genes during S. aureus SA564 growth in VH as compared to growth in glucose-supplemented CDM; a positive number indicates an up-
regulation of the gene during growth in VH. Standard deviation is shown in parentheses. Fold changes $3 and ,10 are shown and italicized.
d Fold change in expression of genes during S. aureus SA564 growth in VH as compared to growth in AH; a positive number indicates an up-regulation of the gene
during growth in VH. Standard deviation is shown in parentheses. Fold changes $3 and ,10 are shown and italicized.
e At least two differentially expressed probe sets were assigned to these ORFs. Data for all probe sets are shown in Table S1.
f On genomic island vSA4 [48].
g On QCOL [48].
h On QSa1 [48].
i On QSa3 [48].
doi:10.1371/journal.pone.0110872.t002
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performed in duplicate for each growth condition. The S. aureus
GeneChip was designed using genome sequence from the S.
aureus strains N315, Mu50, NCTC 8325, and COL, and queries

over 3300 ORFs and intergenic regions [30]. Genome sequence

data are not available for S. aureus SA564. For transcriptome

experiments with wild-type SA564 and its isogenic codY mutant

CDM7 (discussed further below), we obtained statistically signif-

icant hybridization over the background for an average of 64.8%

of probe sets (range, 57–71.8% over 12 chips), corresponding to

,3763 probe sets queried.

We performed three comparative analyses of wild-type S.
aureus SA564 transcriptomes: AH-grown cells compared to

CDM-grown cells (to model growth of S. aureus in the anterior

chamber), VH-grown cells compared to CDM-grown cells (to

model growth of S. aureus in the posterior chamber), and VH-

grown cells compared to AH-grown cells (to model transcriptional

changes potentially occurring after translocation of S. aureus from

the anterior to posterior chambers). A fold change cut-off of 10

was used to consider the most highly differentially regulated genes

in each condition. For the S. aureus GeneChip, probe set IDs (for

example, sa_c10261s8939_a_at) are used instead of gene names or

ORF assignments. To convert differentially expressed probe set

IDs to meaningful S. aureus genomic loci, we compared target

DNA sequences corresponding to differentially expressed probe

sets to S. aureus sequences in GenBank (see Materials and

Methods).

A total of 78 unique probe sets corresponding to 72 ORFs,

regulatory RNAs and intergenic regions were differentially

regulated at least 10-fold across the three comparisons (Table 2

and Table S1). Table S1 is an expanded version of Table 2

showing probe set IDs, BLAST hit distribution among S. aureus
COL, Mu50, N315, and NCTC 8325 genomes, and fold change

data for every gene shown in Table 2, irrespective of meeting the

fold change cut-off of 10. Fold changes $3 and ,10 are also

shown in Table 2 and are italicized. Two probe sets identified as

being differentially regulated in the VH versus CDM analysis,

sa_i7808d_x_at and sa_i9119u10r_x_at, query similar sequence at

non-syntenic regions of multiple S. aureus genomes and could not

be assigned to a single genomic locus (Table S1). Eleven of the

differentially expressed probe sets identified for the two compar-

isons using CDM-grown cells as controls had high standard

deviations (Table S1). Further investigation of the CDM control

arrays revealed that those 11 probe sets were themselves

differentially expressed between the two CDM controls (Table

S1). Data for those 11 probe sets are shown only in Table S1. No

other potential conflicts were detected in the control CDM arrays.

The differentially expressed genes identified by our microarray

analysis can be divided into three categories: (1) genes putatively

involved in transport or metabolism of nutrients; (2) putative or

confirmed virulence and/or biofilm factors; and (3) probable

prophage or genomic island genes of unknown significance.

Perhaps not surprisingly, most differentially expressed genes in the

analysis were assigned to the first category.

Several putative transcriptional units are highly up-regulated

during growth in AH as compared to CDM, and are also down-

regulated during VH growth compared to AH, suggesting that the

corresponding carbon substrates may be specific to or more

abundant in AH. These include SACOL0308-0310, putatively

involved in pseudouridine transport and catabolism; SA-

COL0311-0312, encoding an operon required for sialic acid

catabolism in S. aureus [30]; and SACOL0400-0403, putatively

involved in ascorbate uptake. In addition to these genes,

SACOL0176-0179, SACOL0192-0195, and SACOL0200 are

upregulated during growth in AH, and each appear to involved in

the uptake of and transcriptional response to sugars or

phosphosugars (Table S1).

We additionally identified genes putatively involved in lysine

biosynthesis from aspartate (SACOL1360, bioA, bioD) and

gluconeogenesis (gpm, SACOL2527) as being up-regulated during

growth in both AH and VH as compared to CDM, suggesting that

their regulation is specific to growth in ocular fluids. Another gene

putatively involved in gluconeogenesis, gapA2, was also differen-

tially regulated, but its up-regulation was specific to AH growth.

We also observed differential regulation of a set of putative

prophage and/or genomic island genes (Table 2). Interestingly, all

of these genes were down-regulated in both AH and VH relative

to growth in CDM, suggesting that increased expression of these

genes is CDM-specific. The significance of this is unknown.

Additionally, because genome sequence is not available for SA564

and thus the extent of its accessory genome is unknown, we cannot

exclude the possibility of AH- and/or VH-specific differential

regulation of prophage, plasmid and island genes that are not

represented on the S. aureus Affymetrix chip.

Our microarray analysis was verified using semiquantitative

RT-PCR to verify expression of a few genes discussed including

tst, cidA and nanA (Figure 2). A more intense signal was observed

for tst and nanA from AH samples when compared to CDM, and

cidA signal was more intense in VH when compared to CDM.

The results are consistent with the differential regulation of those

genes in our microarray analysis.

The S. aureus SA564 codY mutant in CDM, AH, and VH
We speculated that codY might have a role in ocular infections

given the presence of leucine, isoleucine and valine in human AH

and VH [16,17,31,32] and given the possibility that those

substrates might become depleted during in vivo S. aureus
growth. We first explored the effect of codY deletion on SA564

transcriptional responses to CDM, bovine AH and bovine VH,

using the previously described SA564 codY-mutant strain, CDM7

[29]. Using GeneChip analysis, we identified 130 probe sets as

being differentially expressed $5-fold, corresponding to 125

Figure 2. Semi-quantitative RT-PCR. Differential expression of tst,
nanA and cidA in AH, VH and CDM. clpX was used as a constitutively
expressed control gene.
doi:10.1371/journal.pone.0110872.g002
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Table 3. Genes differentially expressed by the S. aureus SA564 codY mutant during growth in CDM, AH and VH.

ORFa Gene Description of gene or queried region
DM Fold
changeb

AH Fold
changeb VH Fold changeb

SA1817 sec3 Enterotoxin type C3 6.7 (1.2)

SACOL0136 cap5A Capsular polysaccharide biosynthesis protein Cap5A 8.0 (1.6)

SACOL0138 cap5C Capsular polysaccharide biosynthesis protein Cap5C 6.2 (1.9)

SACOL0185 Peptide ABC transporter permease 53.8 (1.3) 6.5 (1.9) 11.5 (1.2)

SACOL0186 Peptide ABC transporter permease 31.5 (1.2) 5.9 (1.9) 10.9 (1.1)

SACOL0187 RGD-containing lipoprotein 29.3 (1.3) 11.9 (1.1)

SACOL0188 ggt c-glutamyltranspeptidase 13.0 (1.2) 7.1 (1.1)

SACOL0214 Long-chain-fatty-acid-CoA ligase 6.3 (2.4)

SACOL0215 Propionate CoA-transferase 8.4 (1.5)

SACOL0222 ldh1 L-lactate dehydrogenase 7.9 (2.2)

SACOL0267 Hypothetical protein 7.2 (1.0)

SACOL0270 Staphyloxanthin biosynthesis protein 6.5 (1.4)

SACOL0271 Hypothetical protein 5.3 (1.1)

SACOL0274 Hypothetical protein 5.0 (3.2)

SACOL0308c Carbohydrate kinase (39 region) 27.2 (1.7)

SACOL0309 Hypothetical protein 26.8 (1.7)

SACOL0310 Nucleoside permease NupC 27.2 (2.0)

SACOL0427 Hypothetical protein 7.5 (1.1)

SACOL0428 metE 5-methyltetrahydropteroyltriglutamate/homocysteine
S-methyltransferase

19.7 (1.2) 9.2 (1.6)

SACOL0429 Bifunctional homocysteine
S-methyltransferase/5,10-methylenetetrahydrofolate reductase

28.3 (1.2) 11.5 (1.4)

SACOL0430 Trans-sulfuration enzyme family protein 36.1 (1.1) 12.8 (1.1)

SACOL0431 Trans-sulfuration enzyme family protein 30.9 (1.1) 10.4 (1.1)

SACOL0431 rev comp Reverse complement of interior
105 nt region of SACOL0431

11.1 (1.4)

ig_SACOL0431-2 121 nt region upstream of SACOL0431 12.3 (1.7)

SACOL0480 Hypothetical protein 9.7 (1.2)

SACOL0502 Cysteine synthase/cystathionine beta-synthase 7.6 (2.0)

SACOL0503c metB Cystathionine c-synthase 7.1 (2.0)

SACOL0504 ABC transporter ATP-binding protein 30.4 (2.1)

SACOL0505 ABC transporter permease 29.3 (2.4)

SACOL0506 ABC transporter substrate-binding protein 18.4 (1.5)

SACOL0514 gltB Glutamate synthase 23.4 (1.3) 12.1 (1.5)

SACOL0515 gltD Glutamate synthase, small subunit 15.7 (1.3) 9.8 (1.2)

ig_SACOL0701-2 rev comp Reverse complement of intergenic
region between SACOL0701-2; 59

106 nt overlap RsaD sRNA from
Geissmann, et al. 2009 Nucleic Acids Res

20.4 (2.1) 5.4 (1.4) 9.2 (1.4)

SACOL0796 Iron compound ABC transporter permease 25.5 (2.3)

SACOL0797 Iron compound ABC transporter permease 25.8 (2.0)

SACOL0798 Iron compound ABC transporter ATP-binding protein 26.0 (2.3)

SACOL0815 Ribosomal subunit interface protein 5.5 (1.7)

SACOL0860 nuc Thermonuclease precursor 9.2 (1.2) 5.3 (1.3)

SACOL0991 oppB Oligopeptide ABC transport permease 10.7 (1.3)

SACOL0992 oppC Oligopeptide ABC transporter permease 11.5 (1.4)

SACOL0993 oppD Oligopeptide ABC transporter ATP-binding protein 8.3 (1.3)

SACOL0994 oppF Oligopeptide ABC transporter ATP-binding protein 7.9 (1.2)

SACOL0995 Oligopeptide ABC transporter oligopeptide-binding protein 8.3 (1.2)

SACOL1018 Sodium:alanine symporter family protein 21.9 (1.2) 9.9 (3.4) 15.7 (1.7)
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Table 3. Cont.

ORFa Gene Description of gene or queried region
DM Fold
changeb

AH Fold
changeb VH Fold changeb

ig_SACOL1018-9 Intergenic region between
SACOL1018 and SACOL1019

12.3 (1.7) 21.9 (3.7)

SACOL1019 Hypothetical protein 6.1 (1.1)

SACOL1033 Hypothetical protein 8.9 (1.5)

SACOL1038 Membrane protein 9.5 (1.2) 6.3 (2.1) 12.3 (1.3)

SACOL1039 Hypothetical protein 7.0 (1.2) 5.6 (1.6) 13.0 (1.5)

SACOL1040 ABC transporter ATP-binding protein 9.4 (1.5) 7.6 (2.0) 8.4 (1.6)

SACOL1186 Antibacterial protein (phenol soluble modulin) 6.8 (2.6)

SACOL1187 Antibacterial protein (phenol soluble modulin) 6.8 (2.4)

SACOL1272c codY Transcriptional repressor CodY 2789.6 (1.1) 2652.6 (1.4) 2197.4 (1.5)

SACOL1360 Aspartate kinase 30.4 (1.3)

SACOL1362 hom Homoserine dehydrogenase 16.3 (1.3)

SACOL1363 thrC Threonine synthase 17.5 (1.4)

SACOL1364 thrB Homoserine kinase 14.9 (1.3)

SACOL1368 katA Catalase 5.3 (1.7)

SACOL1403 trpE Anthranilate synthase component I 6.0 (1.4)

SACOL1404 trpG Anthranilate synthase component II 6.4 (1.5)

SACOL1405 trpD Anthranilate phosphoribosyltransferase 8.6 (1.6) 6.5 (1.1)

SACOL1406 trpC Indole-3-glycerol-phosphage synthase 13.7 (1.5) 7.7 (1.2)

SACOL1407 trpF N-(59-phosphoribosyl)anthranilate isomerase 21.9 (1.5) 10.0 (1.3)

SACOL1408 trpB Tryptophan synthase subunit b 18.4 (1.7) 6.7 (1.2)

SACOL1409 trpA tryptophan synthase subunit a 6.1 (1.4)

SACOL1428 lysC Aspartate kinase 10.9 (1.7)

SACOL1429 asd Aspartate semialdehyde dehydrogenase 14.2 (1.4)

SACOL1430 dapA Dihydrodipicolinate synthase 13.5 (1.2)

SACOL1431 dapB Dihydrodipicolinate reductase 14.4 (1.2)

SACOL1432 dapD 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate
N-succinyltransferase

13.0 (1.1)

ig_SACOL1432-3 Intergenic region between dapD and
SACOL1433

26.4 (1.8)

SACOL1433 M20/M25/M40 family peptidase 9.2 (1.3)

SACOL1434 Alanine racemase 9.2 (1.2)

SACOL1449 sucA 2-oxoglutarate dehydrogenase E1 component 5.2 (1.1)

SACOL1772 Class V aminotransferase 24.3 (1.2) 5.4 (2.9) 13.7 (1.2)

SACOL1773 serA D-3-phosphoglycerate dehydrogenase 21.5 (1.3) 11.9 (1.2)

SACOL2003 hlb Queries 170 nt (positions 19–188) in
59 region of hlb (phospholipase C)

5.6 (1.3)

SACOL2021-2 RNAIII 39 345 nt of RNAIII; probes region
downstream of d-hemolysin gene

12.1 (3.2)

SACOL2022 hld d-hemolysin 10.4 (3.8)

SACOL2031 Ammonium transporter family protein 11.1 (1.3) 5.0 (1.9) 5.6 (1.2)

ig_SACOL2041-2 Intergenic region upstream of
SACOL2042 ilvD (ilvD promoter
region)

23.4 (4.3)

SACOL2042 ilvD Dihydroxy-acid dehydratase 48.5 (1.4) 11.3 (5.4) 26.4 (1.4)

SACOL2043 ilvB Acetolactate synthase large subunit 80.2 (1.2) 39.4 (1.2)

SACOL2044 Acetolactate synthase 1 regulatory subunit 157.6 (1.7) 8.6 (3.1) 85.9 (1.4)

ig_SACOL2044-5 Intergenic region between SACOL2044 and ilvC 33.7 (1.3)

SACOL2045 ilvC Ketol-acid reductoisomerase 100.4 (1.3) 5.3 (2.2) 61.8 (1.3)

SACOL2046 leuA 2-isopropylmalate synthase 109.5 (1.2) 64.0 (1.3)

SACOL2047 leuB 3-isopropylmalate dehydrogenase 89.0 (1.3) 5.2 (2.3) 64.0 (1.4)
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Table 3. Cont.

ORFa Gene Description of gene or queried region
DM Fold
changeb

AH Fold
changeb VH Fold changeb

SACOL2048 leuC Isopropylmalate isomerase large subunit 95.3 (1.2) 62.9 (1.4)

SACOL2049 leuD Isopropylmalate isomerase small subunit 107.6 (1.2) 5.2 (1.7) 76.1 (1.2)

SACOL2050 ilvA2 Threonine dehydratase 78.8 (1.2) 5.2 (1.9) 41.5 (1.2)

SACOL2314 Sodium/bile acid symporter family protein 7.7 (1.1)

SACOL2403 ABC transporter substrate-binding protein 25.5 (1.4)

SACOL2554.1 LrgA family protein 25.0 (1.5)

SACOL2585 Hypothetical protein 20.0 (1.2) 7.7 (2.8) 10.2 (1.5)

ig_SACOL2585-4 Intergenic region downstream of SACOL2585 6.1 (1.1)

SACOL2619 Amino acid permease 19.0 (1.2) 6.6 (2.9) 9.2 (1.7)

SACOL2620 4-aminobutyrate aminotransferase 29.3 (1.3) 9.0 (3.6) 16.0 (1.5)

ig_SACOL2620-1 Intergenic region upstream of SACOL2620 34.3 (1.3) 7.9 (3.4) 20.4 (2.1)

SACOL2627 betA Choline dehydrogenase 5.0 (2.4)

SACOL2628 betB Betaine aldehyde dehydrogenase 5.4 (2.4)

SACOL2641 gpxA2 Glutathione peroxidase 6.4 (1.4)

ig_SACOL2641-2 Intergenic region between
SACOL2642 and gpxA2
(SACOL2641)

8.3 (1.6)

ig_SACOL2641-2 rev comp Reverse complement of intergenic
region between SACOL2642 and
gpxA2

6.5 (1.8)

SACOL2659 aur Zinc metalloproteinase aureolysin 12.3 (1.6) 5.1 (1.4) 9.2 (1.5)

SACOL2689 icaA N-glycosyltransferase 6.7 (1.1)

SACOL2690 icaD Intercellular adhesion protein D 7.5 (1.3)

ig_SACOL2695-6 Intergenic region between
SACOL2696 (hisI) and SACOL2695

18.7 (1.5) 6.0 (1.5)

SACOL2696 hisI Bifunctional phosphoribosyl-AMP
cyclohydrolase/phosphoribosyl-ATP

14.7 (1.2) 11.5 (1.3)

SACOL2697 hisF Imidazole glycerol phosphate
synthase subunit HisF

16.6 (1.2) 12.3 (1.2)

SACOL2698 hisA 1-(5-phosphoribosyl)-5-((5-phosphoribosylamino)methylideneamino)
imidazole-4-carboxamide isomerase

16.9 (1.2) 18.4 (1.4)

SACOL2699 hisH Imidazole glycerol phosphate synthase subunit HisH 20.7 (1.1) 14.9 (1.5)

SACOL2700 hisB Imidazoleglycerol-phosphate dehydratase 22.2 (1.0) 13.9 (1.2)

SACOL2701 Histidinol-phosphate aminotransferase 24.2 (1.1) 16.9 (1.2)

SACOL2702 hisD Histidinol dehydrogenase 24.3 (1.1) 14.9 (1.1)

SACOL2703 hisG ATP phosphoribosyltransferase catalytic subunit 27.9 (1.1) 11.5 (1.2)

SACOL2704 hisZ ATP phosphoribosyltransferase regulatory subunit 23.0 (1.1) 16.9 (1.1)

ig_SACOL2704-5 Intergenic region between SACOL2705-4 11.7 (1.9) 8.7 (1.5)

SACOL2705 Hypothetical protein 13.9 (1.3) 10.9 (1.1)

ig_SACOL2705-6 Intergenic region between SACOL2706-5 6.1 (1.8)

SACOL2706 Hypothetical protein 18.7 (1.1) 19.4 (1.5)

SACOL2707 Cobalt transport family protein 20.0 (1.2) 16.9 (1.3)

SACOL2708 ABC transporter ATP-binding protein 30.4 (1.3) 19.7 (1.1)

SACOL2709 Hypothetical protein 31.5 (1.5) 13.5 (1.3)

SACOL2710 Hypothetical protein 59.7 (1.3) 8.6 (3.6) 24.7 (1.3)

a ORFs were identified by BLAST analysis of Affymetrix array target sequences, as described in the materials and methods. If a corresponding ORF was identified in S.
aureus COL, that strain’s ORF identifiers were used as default. SACOL####, S. aureus COL (GenBank accession number CP000046.1); SAV####, S. aureus Mu50
(BA000017.4); SA####, S. aureus N315 (BA000018.3); SAOUHSC_####, S. aureus NCTC 8325 (CP000253.1).
b Fold change in expression of genes by S. aureus CDM7 as compared to the wild-type strain during growth in the indicated medium; a positive number indicates an up-
regulation of the gene by the codY mutant. Standard deviation is shown in parentheses.
c At least two differentially expressed probe sets were assigned to these ORFs. Data for all probes sets are shown in Table S2.
doi:10.1371/journal.pone.0110872.t003
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ORFs, regulatory RNAs and intergenic regions (Table 3 and

Table S2).

Genes differentially regulated by the S. aureus SA564 codY
mutant as compared to the wild-type strain during exponential

growth in CDM are similar to those previously identified for S.
aureus Newman (1) and S. aureus UAMS-1 (2) codY mutants

during exponential growth in a chemically defined medium and

tryptic soy broth, respectively (Table S2). As for Newman and

UAMS-1, codY inactivation in SA564 results in an up-regulation of

amino acid metabolic and virulence genes including BCAA

metabolism (ilvDBC, leuABCD, ilvA), hemolysins (hlb, hld), and

phenol-soluble modulins (SACOL1186, SACOL1187). As expect-

ed based on previous studies on CodY regulation in SA564 [29],

we observed up-regulation of icaA, RNAIII and hld. We also

identified expression of an enterotoxin, capsular polysaccharide

biosynthesis proteins, metalloproteinase aureolysin and others as

being affected by codY deletion. All other genes are shown in

Table 3. Interestingly, of 117 ORFs, regulatory RNAs and

intergenic regions identified as being differentially regulated in

CDM when comparing S. aureus codY-mutant to SA564, all but

one (SA1817, the enterotoxin gene) are core to the four S. aureus
strains used to generate the GeneChip (Table S2) [33]. However,

it is possible that as yet unknown S. aureus SA564-specific genes

are under CodY control.

Of the 117 ORFs, regulatory RNAs and intergenic regions

identified as being differentially regulated in the SA564 codY
mutant relative to the wild-type strain during growth in CDM, 55

of those were also identified as being differentially regulated during

growth in VH (Table 3 and Table S2). Of the 117, only 23 were

identified as being differentially regulated during growth in AH.

We were curious as to why this expression pattern was observed in

AH, and whether it could be explained by a relief of CodY

repression occurring during growth in AH at the cell density

chosen for our microarray experiments. To explore this further,

we returned to the microarray analysis of the SA564 wild-type

strain grown in AH, as compared to CDM. Expression data for all

differentially expressed genes for the SA564 codY mutant during

growth in CDM were extracted from each of the four SA564 AH

versus CDM analyses (Table S2). Analysis of these data revealed

that genes previously identified as being under CodY control

[1,2,5,29] were de-repressed in one AH sample (AH2), but not the

other (AH1), relative to CDM (Table S2), most likely as a result of

BCAA becoming depleted from the pooled AH2 sample.

Speculatively, these data suggest that, in vivo in the anterior

chamber, where BCAA are present [16,31], CodY repression may

limit virulence of S. aureus during early stages of infection when

cell densities are likely to be low. Future studies that track BCAA

concentrations and expression of CodY-regulated genes in ex vivo
AH samples over the course of S. aureus growth could be used to

explore this further.

We additionally observed AH-specific up-regulation of lrgAB
and VH-specific up-regulation of cidA. lrgAB and cidA are

involved in coordination of cell death and autolysis, in addition to

their role in biofilm development through the release of genomic

DNA that becomes a structural component of the biofilm matrix.

Note that lrgAB expression varied between the two AH gene

expression experiments, with low albeit significant up-regulation

observed during growth in one AH sample (1.4–2.6 fold up-

regulated compared to CDM controls), and comparatively higher

up-regulation during growth in another AH sample (17.1–27.8-

fold up-regulated compared to CDM controls).

codY deletion enhances S. aureus virulence in a murine
AC infection model

To assess a potential role for CodY in endophthalmitis, we

began by examining the potential for intraocular growth of S.
aureus after injection into the murine AC. Approximately 56103

CFU of S. aureus SA564 or codY-mutant were injected into the

murine AC, and bacterial growth was assessed after 24 h by

extraction and homogenization of the entire eye (Table 4). In all

cases, viable S. aureus were recovered (SA564 range, 46102–2.3–

106 CFU; codY mutant range, 16102–1.36106 CFU). Average

in vivo growth yields of SA564 and CDM7 were similar (4.66105

CFU for SA564; 26105 CFU for CDM7). Thus, after introduction

Table 4. S. aureus SA564, CDM7 and MS7 in vivo growth yields.

SA564 CDM7 MS7

Inoculum (CFU) 24 h (CFU)a Inoculum (CFU) 24 h (CFU)a Inoculum (CFU) 24 h (CFU)a

5.56103 4.06102 8.36103 1.06102 1.26104 NDb

7.06103 9.06102 1.06102

2.06104 1.16103 1.06102

2.66104 1.26104 3.06102

3.76105 1.96105 2.36103

5.56105 6.06105 2.46105

2.36106 1.36106

6.06103 1.06103 5.06103 1.06102 3.06103 ND

3.96103 2.76103 ND

1.36106 7.86103 2.06102

7.36104 3.06102

6.06102

1.26103

3.16103

a Number of CFU recovered per homogenized eye is shown. Each entry represents one eye.
b ND, Not detected. The limit of detection for these experiments was 16102 CFU.
doi:10.1371/journal.pone.0110872.t004
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into the anterior chamber, the murine eye was a permissive

environment for the survival of each strain. Because the entire eye

was homogenized for these experiments, it is unknown whether

growth occurred in the anterior chamber, the posterior chamber,

or both.

We next assessed the impact of codY on inflammation (Fig. 3A)

and retinal responsiveness (Fig. 3B) at 24 h after infection. The

distribution of inflammation scores were significantly different for

eyes infected with the two strains (p,0.001; one-tailed Wilcoxon

rank-sum test), with a higher average inflammation score for the

codY mutant (3.6 versus 2.1) (Fig. 3A). Average retinal respon-

siveness was lower for eyes inoculated with the codY mutant (45%

of control versus 80% of control), and the distribution of percent

retinal responsiveness values was significantly different between

eyes infected with the codY mutant and those infected with SA564

(p = 0.001, one-tailed Wilcoxon rank-sum test) (Fig. 3B). Repre-

sentative histology images are shown in Fig. 4. As seen in the

figure, the eye infected with the codY mutant shows more

inflammation in the cornea, anterior chamber, and vitreous, as

well as disruption of retinal architecture. Collectively, these data

suggest that CodY regulation of its target genes limits S. aureus
disease in the murine anterior chamber infection model.

Similar experiments were performed using previously described

MS7, codY complemented strain [29]. In this vector, codY
expression is under the control of a leaky IPTG-inducible

promoter (PSPAC) [29]. codY expression from pTL6936 appears

to be leaky, as partial complementation was observed for an S.
aureus UAMS-1 codY mutant in the absence of IPTG [34]. We

observed increased retinal responsiveness and decreased inflam-

mation as assessed by slitlamp for murine eyes inoculated with

103–104 CFU MS7, compared to SA564 and CDM7 (Fig. 4A–B),

suggesting that in vivo complementation of the codY occurred.

However, decreased in vivo growth yields were observed for MS7

compared to SA564 and CDM7 (Table 4; range, ,100–2.56105

CFU; average, 1.96104 CFU). Thus it is unknown whether the

increased retinal responsiveness and decreased inflammation

observed for MS7 were due to complementation of the codY
lesion or to an in vivo growth defect of this strain. MS7 does not

have an in vitro growth defect relative to CDM7 as assessed by

growth in CDM; the average doubling time of MS7 is

49.060.5 min, compared to 50.760.3 min for CDM7 (Fig. 1).

Discussion

CodY controls expression of virulence and metabolic genes in

response to branched-chain amino acids (BCAA) and GTP. This

makes it an important regulatory link between nutrient availability

and virulence factor production [1]. However, little is known

about its contribution to virulence in vitro and in vivo in the

ocular milieu.

AH is a complex mixture of electrolytes, organic solutes, growth

factors, cytokines, and proteins including BCAA that provide the

metabolic requirements to the avascular tissues of the anterior

segment. It is produced from the non-pigmented ciliary body

epithelium through simple diffusion as well as active transport of

ions and solutes and exits the anterior chamber mainly via the

trabecular meshwork. The volume of human AH in the anterior

chamber generally turns over once every 100 minutes replenishing

nutrients that have been taken up by avascular ocular tissues and

carries away metabolic wastes [16,17,31].

In this study, we demonstrated that bovine AH and VH provide

adequate nutrition for growth of S. aureus SA564, and result in

differential gene expression when compared to each other, and to

a defined medium. While our in vitro bovine AH and VH models

lack the nutritional replenishment and immune response that

would be characteristic of in vivo growth environments, the

models are useful in that they allow for the identification of

nutrients that S. aureus specifically detects and responds to in the

ocular milieu, in particular, sialic acid, ascorbate, and pseudouri-

dine.

Pseudouridine is a nucleoside present in RNAs of humans and

other animals [32]. It has been detected in tRNAs of the bovine

lens [34]. SACOL0308, SACOL0309, and SACOL0310 share

protein sequence homology and conserved protein domains with

Figure 3. Inflammation and retinal responsiveness in S. aureus
infected eyes. Inflammation scores (A) and % retinal responsiveness
(B) for murine eyes infected with SA564, CDM7, or MS7, assessed 24 h
post-inoculation. Average values are indicated by heavy black
horizontal lines. *, p#0.001, Mann-Whitney test.
doi:10.1371/journal.pone.0110872.g003
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the YeiC, YeiN, and YeiM proteins, respectively, of Escherichia
coli (Table S1) [35]. YeiC is a pseudouridine kinase, and YeiN is a

pseudouridine-59-phosphate glycosidase. Together, YeiC and

YeiN comprise a pathway for the catabolism of pseudouridine to

uracil and ribose-5-phosphate [35]. YeiM is a predicted nucleoside

transporter and may be involved in uptake of pseudouridine from

the environment. It is possible that S. aureus SA564 catabolizes

pseudouridine for energy (via ribose-5-phosphate), and/or for

uracil scavenging in AH.

N-acetylneuraminate, another highly upregulated gene in AH,

is the primary sialic acid moiety present in mammalian tissues, and

sialic acid modification of human cell surfaces is used as a ‘‘self

versus non-self’’ signal to the immune system, allowing for

discrimination of cell types, among other functions of sialic acids

[36]. In the eye, sialic acid is distributed in all structures, including

cornea, sclera, AH, trabecular meshwork, lens, VH and retina,

and its concentration seems to increase with aging [37].

SACOL0312 and SACOL0311 encode a putative sodium:solute

symporter protein (NanT) and N-acetylneuraminate lyase (NanA),

respectively. NanA converts N-acetylneuraminate to N-acetyl-

mannosamine and pyruvate [38]. Recently, it was shown that

nanA and nanT are co-transcribed in S. aureus strain AH1263

[30]. Further, nanA and nanT are required for S. aureus growth

with sialic acid [30]. Our microarray results suggest that S. aureus
SA564 transports and catabolizes sialic acid during growth in

bovine AH.

Ascorbate (vitamin C) is abundant in the eye and present at

much higher concentrations than in the plasma [39]. It is actively

transported by the iris-ciliary body into the AH and serves as an

antioxidant to protect the eye against light-induced free radical

damage [40]. SACOL0400-SACOL0403 encode a putative

ascorbate uptake transport system (ulaABC) and a predicted

transcriptional antiterminator (Table 2 and Table S1). In E. coli,
the PTS-like UlaABC system (alternatively named SgaTBA)

transports ascorbate with concomitant phosphorylation, trapping

ascorbate-6-phosphate in the cell [41]. S. aureus may transport

ascorbate to prevent Fenton reaction damage occurring as a result

of extracellular iron reduction by ascorbate under aerobic

conditions [42].

Several virulence factors were specifically up-regulated during

growth in AH, including an enterotoxin (sec3), the toxic shock

syndrome toxin (tst), and a phenol soluble modulin (Table 2). The

toxic shock syndrome toxin and the SEC enterotoxin are

superantigens that are important in infections such as infective

endocarditis and pneumonia [43–45]. Immunization against those

exotoxins was found to protect against those serious illnesses

[44,46]. Phenol soluble modulins have also been found in animal

models to have an essential role in bacteremia and skin infections

[47]. The AH-specific up-regulation of these factors may facilitate

translocation of S. aureus or S. aureus-produced factors into the

posterior chamber and/or retinal damage during S. aureus
endophthalmitis.

As for the analysis of the codY mutant, our microarray results

demonstrate that codY deletion impacts expression of metabolic

and virulence genes in S. aureus SA564. However, genes affected

by codY were not consistent across the two pooled AH samples

used here, suggesting that BCAA became depleted from one of the

samples. These data indicate that, in vivo in the AC, where BCAA

are present and replenished by AH turnover continuously, CodY

repression may limit virulence of S. aureus during early stages of

infection when cell densities are likely to be low. Consistent with

this proposal, deletion of codY enhanced virulence of S. aureus in a

murine AC infection model, as assessed by retinal function

measurements, degree of inflammation in the eye, and histological

assessments of ocular tissue damage. The microarray results

suggest a role for enterotoxin (sec3), the toxic shock syndrome

toxin (tst), and a phenol soluble modulin in endophthalmitis

progression. Collectively, these data suggest that CodY repression

of its target genes limits S. aureus disease in the murine AC

infection model.

In conclusion, we used novel in vitro and in vivo infection

models to characterize the behavior of S. aureus during

endophthalmitis, one a nutritional model utilizing bovine ocular

fluids as media for S. aureus growth ex vivo, and one an in vivo
infection model evaluating endophthalmitis progression after S.
aureus injection into the murine AC. We identified metabolic

pathways that may be important for S. aureus endophthalmitis,

specifically sialic acid, ascorbate, and pseudouridine metabolism.

We are now directly assessing the roles of these pathways in the

pathogenesis of S. aureus endophthalmitis. We additionally

identified several virulence factors whose expression was activated

by growth in ocular fluids, suggesting that transcriptional

Figure 4. Histology images. Representative histology images of S. aureus SA564- and CDM7-infected eyes at 24 h post-inoculation. Retinal
responsiveness values for the infected eyes shown were 95.9% (SA564) and 11.9% (CDM7). Panels shown, from top to bottom, are the whole eye, the
AC, and the retina.
doi:10.1371/journal.pone.0110872.g004
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regulation of these genes is influenced by specific nutrients present

in the eye. Our in vivo endophthalmitis model, a murine AC

infection model, revealed a link between the BCAA-responsive

transcriptional regulator CodY and experimental endophthalmitis

progression. More specifically, relief of CodY repression of its

target genes (by deletion of codY) enhanced S. aureus pathogenesis

in the murine eye. Interestingly, this result suggests that it may be

possible to use BCAA to mitigate S. aureus endophthalmitis

progression by supplementing BCAA in eye drops postoperatively

or by adding BCAA to the infusion solution that goes through the

eye during intraocular surgery.

Supporting Information

Table S1 An expanded version of Table 2 with probe set
IDs, BLAST hit distribution among S. aureus COL,

Mu50, N315, and NCTC 8325 genomes, and fold change
data for every gene shown in Table 2, irrespective of
meeting the fold change cut-off of 10.

(PDF)

Table S2 Expression data for all differentially ex-
pressed genes for the SA564 and SA564 codY mutant
during growth in CDM versus AH.

(PDF)

Author Contributions

Conceived and designed the experiments: AS KP TS MG. Performed the

experiments: AS KP TS MG. Analyzed the data: AS KP TS MG.

Contributed reagents/materials/analysis tools: AS KP TS MG. Contrib-

uted to the writing of the manuscript: AS KP TS MG.

References

1. Pohl K, Francois P, Stenz L, Schlink F, Geiger T, et al. (2009) CodY in

Staphylococcus aureus: a regulatory link between metabolism and virulence
gene expression. J Bacteriol 191: 2953–2963.

2. Majerczyk CD, Dunman PM, Luong TT, Lee CY, Sadykov MR, et al. (2010)

Direct targets of CodY in Staphylococcus aureus. J Bacteriol 192: 2861–2877.

3. Geiger T, Goerke C, Fritz M, Schafer T, Ohlsen K, et al. (2010) Role of the
(p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and

virulence of Staphylococcus aureus. Infect Immun 78: 1873–1883.

4. Bennett HJ, Pearce DM, Glenn S, Taylor CM, Kuhn M, et al. (2007)

Characterization of relA and codY mutants of Listeria monocytogenes:
identification of the CodY regulon and its role in virulence. Mol Microbiol

63: 1453–1467.

5. Sonenshein AL (2005) CodY, a global regulator of stationary phase and
virulence in Gram-positive bacteria. Curr Opin Microbiol 8: 203–207.

6. Guedon E, Serror P, Ehrlich SD, Renault P, Delorme C (2001) Pleiotropic

transcriptional repressor CodY senses the intracellular pool of branched-chain

amino acids in Lactococcus lactis. Mol Microbiol 40: 1227–1239.

7. den Hengst CD, Groeneveld M, Kuipers OP, Kok J (2006) Identification and
functional characterization of the Lactococcus lactis CodY-regulated branched-

chain amino acid permease BcaP (CtrA). J Bacteriol 188: 3280–3289.

8. Levdikov VM, Blagova E, Colledge VL, Lebedev AA, Williamson DC, et al.
(2009) Structural rearrangement accompanying ligand binding in the GAF

domain of CodY from Bacillus subtilis. J Mol Biol 390: 1007–1018.

9. Levdikov VM, Blagova E, Joseph P, Sonenshein AL, Wilkinson AJ (2006) The
structure of CodY, a GTP- and isoleucine-responsive regulator of stationary

phase and virulence in gram-positive bacteria. J Biol Chem 281: 11366–11373.

10. Slack FJ, Serror P, Joyce E, Sonenshein AL (1995) A gene required for

nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol
Microbiol 15: 689–702.

11. Wu PC, Kuo HK, Li M, Lai IC, Fang PC, et al. (2006) Nosocomial

postoperative endophthalmitis: a 14-year review. Graefes Arch Clin Exp
Ophthalmol 244: 920–929.

12. Endophthalmitis Study Group ESoC, Refractive S (2007) Prophylaxis of

postoperative endophthalmitis following cataract surgery: results of the ESCRS

multicenter study and identification of risk factors. J Cataract Refract Surg 33:
978–988.

13. Andreoli CM, Andreoli MT, Kloek CE, Ahuero AE, Vavvas D, et al. (2009)

Low rate of endophthalmitis in a large series of open globe injuries. Am J
Ophthalmol 147: 601–608 e602.

14. Jonas JB, Knorr HL, Budde WM (2000) Prognostic factors in ocular injuries

caused by intraocular or retrobulbar foreign bodies. Ophthalmology 107: 823–
828.

15. Hanscom T (1996) The Endophthalmitis Vitrectomy Study. Arch Ophthalmol

114: 1029–1030; author reply 1028–1029.

16. Durham DG, Dickinson JC, Hamilton PB (1971) Ion-exchange chromatography

of free amino acids in human intraocular fluids. Clin Chem 17: 285–289.

17. Nakatsukasa M, Sotozono C, Shimbo K, Ono N, Miyano H, et al. (2011) Amino
Acid profiles in human tear fluids analyzed by high-performance liquid

chromatography and electrospray ionization tandem mass spectrometry. Am J
Ophthalmol 151: 799–808 e791.

18. Booth MC, Atkuri RV, Nanda SK, Iandolo JJ, Gilmore MS (1995) Accessory

gene regulator controls Staphylococcus aureus virulence in endophthalmitis.

Invest Ophthalmol Vis Sci 36: 1828–1836.

19. Callegan MC, Engelbert M, Parke DW, 2nd, Jett BD, Gilmore MS (2002)
Bacterial endophthalmitis: epidemiology, therapeutics, and bacterium-host

interactions. Clin Microbiol Rev 15: 111–124.

20. Balzli CL, Bartell J, Dajcs JJ, McCormick CC, Caballero AR, et al. (2010) A
highly virulent Staphylococcus aureus: rabbit anterior chamber infection,

characterization, and genetic analysis. Invest Ophthalmol Vis Sci 51: 5114–

5120.

21. Wu X, Chen H, Jiang H, Xu Y, Liu T, et al. (2012) Prophylactic effect of topical

fluoroquinolones in a rabbit model of Staphylococcus aureus endophthalmitis.

J Ocul Pharmacol Ther 28: 186–193.

22. Kowalski RP, Romanowski EG, Mah FS, Sasaki H, Fukuda M, et al. (2008) A

comparison of moxifloxacin and levofloxacin topical prophylaxis in a

fluoroquinolone-resistant Staphylococcus aureus rabbit model. Jpn J Ophthal-

mol 52: 211–216.

23. Booth MC, Cheung AL, Hatter KL, Jett BD, Callegan MC, et al. (1997)

Staphylococcal accessory regulator (sar) in conjunction with agr contributes to

Staphylococcus aureus virulence in endophthalmitis. Infect Immun 65: 1550–

1556.

24. Labit CM, Claeys GW, Verbraeken HE, Verschraegen GL (2001) Methicillin

resistance of bacteria isolated from vitreous fluid from patients undergoing

vitrectomy. Eur J Ophthalmol 11: 160–165.

25. Socransky SS, Dzink JL, Smith CM (1985) Chemically defined medium for oral

microorganisms. J Clin Microbiol 22: 303–305.

26. Suzuki T, Campbell J, Swoboda JG, Walker S, Gilmore MS (2011) Role of wall

teichoic acids in Staphylococcus aureus endophthalmitis. Invest Ophthalmol Vis

Sci 52: 3187–3192.

27. Palmer KL, Mashburn LM, Singh PK, Whiteley M (2005) Cystic fibrosis sputum

supports growth and cues key aspects of Pseudomonas aeruginosa physiology.

J Bacteriol 187: 5267–5277.

28. Suzuki T, Wada T, Kozai S, Ike Y, Gilmore MS, et al. (2008) Contribution of

secreted proteases to the pathogenesis of postoperative Enterococcus faecalis

endophthalmitis. J Cataract Refract Surg 34: 1776–1784.

29. Majerczyk CD, Sadykov MR, Luong TT, Lee C, Somerville GA, et al. (2008)

Staphylococcus aureus CodY negatively regulates virulence gene expression.

J Bacteriol 190: 2257–2265.

30. Olson ME, King JM, Yahr TL, Horswill AR (2013) Sialic acid catabolism in

Staphylococcus aureus. J Bacteriol 195: 1779–1788.

31. WM H (1992) Adler’s Physiology of the Eye.

32. Bertram KM, Bula DV, Pulido JS, Shippy SA, Gautam S, et al. (2008) Amino-

acid levels in subretinal and vitreous fluid of patients with retinal detachment.

Eye (Lond) 22: 582–589.

33. Affymetrix I. GeneChip Made-to-Order Array Program Data Sheet: Affymetrix,

Inc.

34. Ortwerth BJ, Yonuschot GR, Heidlege JF, Chu-Der OM, Juarez D, et al. (1975)

Induction of a new species of phenylalanine transfer RNA during lens cell

differentiation. Exp Eye Res 20: 417–426.

35. Preumont A, Snoussi K, Stroobant V, Collet JF, Van Schaftingen E (2008)

Molecular identification of pseudouridine-metabolizing enzymes. J Biol Chem

283: 25238–25246.

36. Varki A, Gagneux P (2012) Multifarious roles of sialic acids in immunity.

Ann N Y Acad Sci 1253: 16–36.

37. Haddad HM (1962) Sialic acids in human eyes. Relationship to lens aging and

retinal pathology. Arch Ophthalmol 67: 459–463.

38. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of

microbial sialic acid metabolism. Microbiol Mol Biol Rev 68: 132–153.

39. Johnsen H, Ringvold A, Blika S (1985) Ascorbic acid determination in serum

and aqueous humour by high-performance liquid chromatography. Acta

Ophthalmol (Copenh) 63: 31–34.

40. Tso MO, Woodford BJ, Lam KW (1984) Distribution of ascorbate in normal

primate retina and after photic injury: a biochemical, morphological correlated

study. Curr Eye Res 3: 181–191.

41. Zhang Z, Aboulwafa M, Smith MH, Saier MH, Jr. (2003) The ascorbate

transporter of Escherichia coli. J Bacteriol 185: 2243–2250.

42. Campos E, Montella C, Garces F, Baldoma L, Aguilar J, et al. (2007) Aerobic L-

ascorbate metabolism and associated oxidative stress in Escherichia coli.

Microbiology 153: 3399–3408.

In Vitro and In Vivo S. aureus Endophthalmitis Models

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e110872



43. Pragman AA, Yarwood JM, Tripp TJ, Schlievert PM (2004) Characterization of

virulence factor regulation by SrrAB, a two-component system in Staphylococ-

cus aureus. J Bacteriol 186: 2430–2438.

44. Mattis DM, Spaulding AR, Chuang-Smith ON, Sundberg EJ, Schlievert PM,

et al. (2013) Engineering a soluble high-affinity receptor domain that neutralizes

staphylococcal enterotoxin C in rabbit models of disease. Protein Eng Des Sel

26: 133–142.

45. Strandberg KL, Rotschafer JH, Vetter SM, Buonpane RA, Kranz DM, et al.

(2010) Staphylococcal superantigens cause lethal pulmonary disease in rabbits.

J Infect Dis 202: 1690–1697.

46. Spaulding AR, Lin YC, Merriman JA, Brosnahan AJ, Peterson ML, et al. (2012)

Immunity to Staphylococcus aureus secreted proteins protects rabbits from
serious illnesses. Vaccine 30: 5099–5109.

47. Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, et al. (2007)

Identification of novel cytolytic peptides as key virulence determinants for
community-associated MRSA. Nat Med 13: 1510–1514.

48. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, et al. (2005) Insights
on evolution of virulence and resistance from the complete genome analysis of

an early methicillin-resistant Staphylococcus aureus strain and a biofilm-

producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol
187: 2426–2438.

In Vitro and In Vivo S. aureus Endophthalmitis Models

PLOS ONE | www.plosone.org 14 October 2014 | Volume 9 | Issue 10 | e110872


